

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

IST Austria

17 June 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rules and Tips

- QUIZ: Algebraic Curves and Moduli
- Tanya Kaushal Srivastava
- Round 1
- Round 2
- Round 3

- **1** You can google or look in any AG book.
- 2 You can take audience help.
- 3 You will get 5 min to answer a question.

IMPORTANT TIP

Pay attention to all the questions being asked, you may have to use it to answer the next one. You can keep a note of the questions already answered.

Table of Contents

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

1 Round 1

2 Round 2

3 Round 3

・ロト ・回ト ・ヨト ・ヨト

æ

Round 1

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Everybody answers each of the following three questions in chat to me.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question 1: Can you count?

QUIZ: Algebraic Curves and Moduli

Tanya Kausha Srivastava

Round 1

Round 2

Round 3

Question

Is the following functor representable in the category of sets?

$$F: \{Sets\}^{op} \to \{Sets\}$$
$$X \mapsto \begin{cases} \pi: E \to X | \pi \text{ set map} \\ \text{with finite fibers} \\ \text{upto iso.} \end{cases}$$

Isomorphism of set families is being an isomorphism bijective on the fibers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Answer 1: Of course, you can!

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

The functor is representable by $\mathbb N,$ the set of natural numbers. What is the universal family?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Question 2: Hilbert Polynomial does not know this but Hilbert series does?

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

An example of a family where Hilbert series varies but Hilbert polynomial does not is:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Answer 2

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

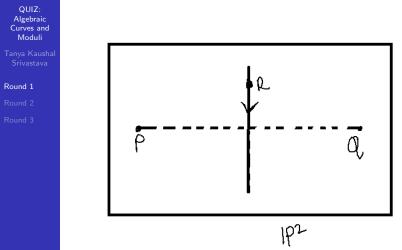
Consider the family $\mathfrak{X} = P \sqcup R \sqcup Q \subset \mathbb{P}^2 imes \operatorname{Spec}(k[t])$, where

$$P : \{x = y + z = 0\}$$
$$Q : \{x = y - z = 0\}$$
$$R : \{y = x - tz = 0\}$$

Fibers	Hilbert Polynomial	Hilbert Series at $n=1$
Generic fiber $\mathfrak{X}_{(0)}$	3	2
Special fiber $\mathfrak{X}_{(\lambda)}$	3	3

Answer 2: Non-collinear to colinear points

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Question 3: Hilbert polynomial still does not get it or does it?

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Which subschemes of \mathbb{P}^3 have 2n + 2 as Hilbert polynomial?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Question 3: Hilbert polynomial still does not get it or does it?

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Hint to Question

Which subschemes of \mathbb{P}^3 have 2n + 2 as Hilbert polynomial?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hint: Give atleast two.

Answer

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Two skew lines

As they are disjoint, their Hilbert polynomials add up $(h_{line} = n + 1)$.

Smooth conic with an embedded point

Hilbert polynomial of a smooth conic is 2n + 1 with a point raises the constant by 1.

E.g:
$$\{XY = Z = 0\} \cup \{X = Y = Z^2 = 0\}$$

Smooth conic with a point not on the conic

 $h_{\text{smooth conic}} = 2n + 1$ and then a disjoint point raises the polynomial by 1.

Table of Contents

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

1 Round 1

2 Round 2

3 Round 3

(日) (個) (目) (日) (の)

Round 2

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 3

Each one of you get an individual question, time to give the answer is 5 min. Your time starts after I finish reading the question!

Question 4: One more thing about Hilbert polynomial

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

What is the Hilbert polynomial of \mathbb{P}^1 ?

Question 4: One more thing about Hilbert polynomial

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

What is the Hilbert polynomial of \mathbb{P}^1 considered as a subscheme of itself and considered as a subscheme of P^d via the Veronese embedding?

Veronese Embedding:

$$v_d: \mathbb{P}^1 \hookrightarrow \mathbb{P}^d$$

 $[X:Y] \mapsto [X^d: X^{d-1}Y: \ldots:Y^d].$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Answer: The Hilbert polynomial depends on the embedding

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

Hilbert polynomial is m + 1, dm + 1 respectively.

Computations: In the first case $\Gamma(\mathbb{P}^1) = k[x, y]$ and $\Gamma(\mathbb{P}^1)_m = Span\{x^m, x^{m-1}y, \dots y^m\}$, so

$$h_{\mathbb{P}^1\subset\mathbb{P}^1}(m)=\dim_k\Gamma_m(\mathbb{P}^1)=m+1.$$

In the second case, $\Gamma(v_d(\mathbb{P}^1))_m = k[x, y]_{dm}$, thus we have

$$h_{\mathbb{P}^1 \subset \mathbb{P}^d}(m) = \dim_k \Gamma_m(v_d(\mathbb{P}^1)) = md + 1$$

Remark about various Degrees

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Remark

Let X be a smooth curve and let D be a very ample divisor on X, corresponding to a closed immersion $\varphi : X \hookrightarrow \mathbb{P}^n$, then

$$\deg \varphi(X) = \deg D.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Question 5: Relation between I(D) and deg D

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Let X be a smooth curve of genus g and D be an effective divisor on X. True or False: deg $D \ge l(D)$. Give a proof or an counterexample.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Answer: Relation between I(D) and deg D

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

False: For the zero divisor D, $I(D) \neq 0$ but deg D = 0. The relation is $I(D) \leq degD + 1$. And equality occurs if and only if g = 0 or D = 0.

Proof.

R-R : $I(D) - I(K - D) = \deg D + 1 - g$ In case D is effective we have $I(K - D) \le I(K) = g$. Thus

$$l(D)-g\leq l(D)-l(K-D)=\deg D+1-g.$$

In case g = 0, we have I(K - D) = 0, hence the equality holds. For the converse, note that I(K) = I(K - D) implies $D \sim 0$ or g = 0.

Question 6: Curves of Genus 2

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Give a curve of genus 2 in \mathbb{P}^2 ? Is it smooth? Can you write me a smooth curve of genus 2 in \mathbb{P}^2 ?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Answer: A genus 2 smooth curve cannot be embedded in \mathbb{P}^2

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

For example: $y^2 = x^5 - 1$, but is not smooth in \mathbb{P}^2 . There is **no smooth curve of genus 2** in \mathbb{P}^2 : as for a smooth genus 2 curve to be embedded in any \mathbb{P}^n , you need a very ample line bundle \mathcal{L} which is generated by n + 1 global sections, but every very ample line bundle on a smooth genus 2 curve has degree at least 5.(Prove this!) Then R-R implies that \mathcal{L} is generated by deg $\mathcal{L} - 1$ global sections, thus the least *n* we get is 3.

Question 7: Curve of degree d

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Let X be a smooth curve of degree d in \mathbb{P}^n , with $d \leq n$, which is not contained in \mathbb{P}^{n-1} . What is its genus? Does the equality hold between n and d?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Answer: Rational normal curve of degree d

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

Its genus is 0 and d=n.

Since $X \subset \mathbb{P}^n$ but not in \mathbb{P}^{n-1} , there is a very ample divisor on X of deg D = d and l(D) = n + 1, now take any linearly equivalent effective divisor, since $l(D) \neq 0$, there exists one such.

Then use Question 5, to get $I(D) \leq \deg D + 1$, which gives

$$n+1 \leq d+1 \leq n+1.$$

Thus d = n and the equality holds for I(D) and deg D + 1, which implies that g = 0 as $D \not\sim 0$.

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Remark

Note that such an curve differs from a Rational normal curve of degree d only by an automorphism of \mathbb{P}^n . Rational Normal curve of degree d in \mathbb{P}^d is just the Veronese embedding of \mathbb{P}^1 in \mathbb{P}^d .

Question 8: Curve of degree 2 and 3

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

I have a smooth curve of degree 2 in some \mathbb{P}^n , which familiar curve can it look like and in where? I have a smooth curve of degree 3 in some \mathbb{P}^n , which familiar curve(s) can it look like and in where?

Answer: A Curve of degree d is a familiar curve of degree d in \mathbb{P}^d

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

From Question 7, we see that, a curve of degree 2 can be embedded into \mathbb{P}^2 such that it is not contained in \mathbb{P}^1 but not in any higher dimensional \mathbb{P}^n , for n > 2 and such a curve has genus 0.

Thus, every degree 2 curve in any \mathbb{P}^n is a conic in \mathbb{P}^2 .

Answer: degree 3

Answer: degree 2

For degree 3: There are two cases: Either is it contained in \mathbb{P}^2 or not, in which case it has to be contained in \mathbb{P}^3 : In case it is in \mathbb{P}^2 : it is plane cubic curve: genus 1— Elliptic curve Or it is a twisted cubic: genus 0 curve in \mathbb{P}^3 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Hey, what about embedding in \mathbb{P}^1 ? This is not possible !!

Question 9

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Let X be a smooth curve in \mathbb{P}^3 but $X \not\subset \mathbb{P}^2$, any plane and deg $(X \subset \mathbb{P}^3) = d$, genus is g. Project \mathbb{P}^3 from $O \notin X$ to \mathbb{P}^2 and let $\varphi(X)$ be the image of X in \mathbb{P}^2 . Is $\varphi(X)$ smooth? Why or why not?

Hint: Compute $H^0(X, \mathcal{O}_X(1))$.

Answer

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

It is not smooth because assuming otherwise and let us compute $H^1(X, \mathcal{O}_X(1))$.

Then as φ is a non-constant map between smooth curves, it is an isomorphism.

Since $X \subset \mathbb{P}^3$ but $\not\subset H$, for any hyperplane H, we have $H^0(\mathbb{P}^3, I_X(1)) = 0$. Thus, $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(1)) \to H^0(X, \mathcal{O}_X(1))$ is injective, so

 $h^0(\mathcal{O}_X(1)) \ge 4.$ However, $\varphi(X) \subset in\mathbb{P}^2$ implies that

 $h^{0}(\varphi(X), \mathcal{O}_{\varphi(X)}) \leq h^{0}(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}) = 3.$ A contradiction!

Bonus Question: End of Round 2

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Let X be a smooth curve in \mathbb{P}^3 but $X \not\subset \mathbb{P}^2$, any plane and $\deg(X \subset \mathbb{P}^3) = d$, genus is g. True or False?

$$g < 1/2(d-1)(d-2)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why?

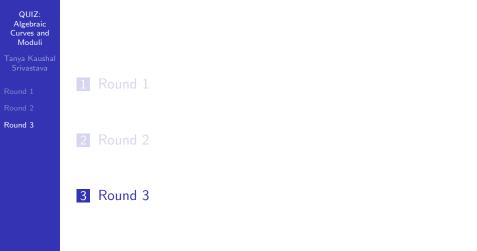
Answer

QUIZ: Algebraic Curves and Moduli Answer Tanya Kaushal Srivastava True.

Note that X is a normalization of $\varphi(X)$ so we have $g(X) \leq g(\varphi(X)) = 1/2(d-1)(d-2)$ and as $\varphi(X)$ must be not smooth, we have strict inequality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Table of Contents



・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Round 3

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Now we reverse the order.

・ロト ・回ト ・ヨト ・ヨト

æ

Question 10: Curves of degree 4

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Let X be a smooth curve of degree 4 in some \mathbb{P}^n , what are all the possible genus of such curves?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Answer: Genus of curves of degree 4

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

I g=0, when X ⊂ P⁴ but not in any lower dimensional subspace, so it is a rational normal curve of degree 4 or X ⊂ P³ but not in any plane in P³, rational quartic curve in P³.

2 g = 1 when
$$X \subset \mathbb{P}^3$$

3 g = 3, when $X \subset \mathbb{P}^2$: quartic plane curve.

Note that the case g = 2 is not possible as for any genus 2, the minimum degree of very ample line bundle is 5.

Question 11: Curves of genus atleast 2

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Given a smooth curve of genus atleast two, give a base point free linear system on it? Or equivalently give a globally generated line bundle over it?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Answer: canonical linear system

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

 $\omega_{X/k}$, the canonical bundle or linear system |K|. Another one is given by the divisor 2g[P], where P is a point on the curve and g is the genus of the curve.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question 12: A very ample canonical linear system

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Let X be a smooth curve of genus atleast 2, under what condition on X is $\omega_{X/k}$ a very ample line bundle?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Answer

QUIZ: Algebraic Curves and Moduli	
Tanya Kaushal Srivastava	
Round 1	
Round 2	Answer
Round 3	

When X is not hyperelliptic !

This gives the canonical embedding of curves...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question 13: Hilbert scheme

QUIZ: Algebraic Curves and Moduli	
	Question
Round 3	Which familiar variety is the Hilbert scheme of n points on \mathbb{P}^1 ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

i.e., $Hilb_{\mathbb{P}^1}^n$?

Answer

QUIZ: Algebraic Curves and Moduli			
Tanya Kaushal Srivastava			
Round 1			
Round 2	٨		
Round 3	Answer		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \mathbb{P}^{n} .

Question 14

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question: Cartier vs Weil Divisor

Give an example of a Weil divisor which is not Cartier.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Answer: Informally, a Cartier divisor is simply a Weil divisor defined locally by one equation

QUIZ: Algebraic Curves and Moduli

Answer

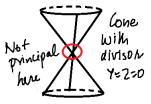
Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Consider the cone: Spec $k[x, y, z]/(xy - z^2)$, and the Weil divisor on it given by y = z = 0, this divisor is not Cartier, as the ideal generated by y, z is not a principal ideal.



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Question 15: Non trivial Automorphism

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Question

Consider the curve

$$x^3y + y^3z + z^3x = 0 \subset \mathbb{P}^2$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Give a non-trivial automorphism of this curve. (char \neq 3)

Answer: There are 167 non-trivial automorphisms of this curve.

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

Let ζ_7 be a seventh root of unity, then a non-trivial automorphism is

$$\begin{array}{ll} x & \mapsto \zeta_7 x \\ y & \mapsto \zeta_7^4 y \\ z & \mapsto \zeta_7^2 z. \end{array}$$

The following curve has no automorphisms:

$$y^3 - 3y = x^{g+1} + x^g + 1$$

char $= p \neq 3$, $g \neq (2 \mod 3)$, $g \equiv 0$ or $-1(\mod p)$.

Bonus Question: LADY GAGA

QUIZ: Algebraic Curves and Moduli	
	Question
Round 3	What is the analytification of the scheme $x^2 = 0$ (double line) in $\mathbb{A}^2_{\mathbb{C}}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Answer: Not reduced analytic space

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

Answer

It is the ringed space $(\mathbb{C}, \mathcal{H}/ < z_1^2 >)$, where \mathcal{H} is the sheaf of holomorphic functions on \mathbb{C}^2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

QUIZ: Algebraic Curves and Moduli

Tanya Kaushal Srivastava

Round 1

Round 2

Round 3

End. Thank you!

・ロト ・回ト ・ヨト ・ヨト

æ