Lecture 16: Properties of flat families and Hilbert scheme

Next week Topic for Presentation: Serre's GAGA Reference: Algebraic and Analytic Geometry by Neeman Subtopics: 1. Analytification of affine schemes 2. Analytification of schemens 3. Analytification of schement sheaves 4. Main theorem: Serre's GAGA

Pupp: let f: X-1Y be a morphion of schunes, will Yinlegeal and regular of dim 1. Then f is flat if eury anouated point x & X maps to the generic pt. of Y. In particular if X is reduced, of induit iff every roved comp. of X domiter Proof: Suppose - I is that and let x & X such that f(x)= y is a les et e my my uniformicity element Then t is not a zero division , no Oy, y. Sim of is fat ft & me is not a very divisor, we x is not an associated of the Converse, suppose that every as pt. maps to the gomin pt. of Uam. f'is fat. It x, y=J(x) Ox, x in flat/Oxy If y in the generic point, Oxy in field, nt? If y is a closed point. Oyy is a due, so we need to show Ox, a is torsion free If it is not, =) ft must be a zero diviser in m => f#t ep = ArolOX,) (+>= my Then p determines a point z' e X which is amoid md + (x) = y (not a generic p) X Meduce Ars (X) = Generic p's of X. Reput fails of Y dim 71 Evample, $Y = A^2$, X = 1000 up at a point in A^2 transle, $Y = A^2$, X = 1000 up of a point in A^2 then X. Y are nonsitypular and X dominates Y $\bar{x} \in p^r$ but 1: X-> Y is not flat 1 X C IRY-P - (dimension of fibers are) Jlat J. J. Y-P Proper let y be a regular, integral scheme of dim 1, let PEY be a closed pt and let XS IR" - p be a closed subscheme which is flat over Y-P. Then there exists a unique closed subscheme X & IPy, flat own Y, whose restriction to IP is X. , limit 9× X Poroof: X := closure of x in Py [[]] CIRyp XIIIII Anocialed points of X are 4 (Just those of X, so the above frop" =) X is that Y Uniqueness: Any other extⁿ of X to Py, it would have some an occased pt mapping to P. D. Remark: This well imply "tilbert dume" in poper. /1] In a flat family in educibility / reduced new is not preserved !! $E_{xample} := k = k = k = speck [x, y, z]/(+y-x^2)$ Y= 'spieck[t] -(: X -> Y le(t) (-> le[x, y, t]/ Hy. x) , X, Y are integral schemes - (is surjective => donisment I dentify closed points of Y dements of k. For at k. a + O, Xa:= plane curve ay= 2² in A² (irreducible, reduced) But for a=0, Xo:=(x=0) E Alle (not reduced) X = speck[x, y,t]/(xy-t) -> speck[t] $X_a = (xyza)$ irreduible $X_o = (xyzo)$ reduible +

$$X_{a} = (xy \pm a) \quad irreduible \qquad X$$

$$Y_{o} \quad (xy \pm 0) \quad reduible \qquad Y$$
Theorem: lef T less an integral noetherian scheme. let
$$X \in IP_{T} \quad be \ a \quad closed \quad subscheme \quad for each point + eT, \\ iensiden \quad the Hilbert polynomial $P_{t} \in QFZI \quad of \quad the \\ is the Y_{t} ioni dered as a closed subscheme of $IP_{k}(t)$. Then
$$X is \quad flat \quad ore \quad T \quad iff \quad the \quad tilbert \quad polynomial \quad P_{t-1}s \\ in \ dependent \quad of t. \qquad tim_{X=3} \quad X \leq IP^{2} \quad I \ oherval sheaf$$

$$P_{f}: \quad tilbert \quad polynomial: \quad This is a numerical \quad polynomial charbenia
$$P_{X,Y}(m) = h^{\circ}(X, F(m)) \quad m \geq 0.$$

$$\cdot \quad degree \quad of X \quad as \quad the s!(leading \ leng \ of the \\ filter \quad the s!(leading \ leng \ of the \\ is the filter \\ independent \quad for \\ X_{t}, \quad (m) = f^{\circ}(X, F(m)) \quad m \geq 0.$$

$$\cdot \quad degree \quad of X \quad as \quad the s!(leading \ leng \ of the \\ filter \\ F_{t}(m) = \dim_{k(t)} H^{\circ}(X_{t}, \quad OX_{t}(m)) \quad m \geq 0.$$

$$\overline{First \quad use \quad generalize, \quad replacing \quad O_{X} \quad by \ any \quad coherent \quad sheaf \\ (m \quad IP_{T}^{n}, \quad and \quad using \quad the \quad Hilbert \quad polynomial \quad for \quad J_{t}. \\ Thus \quad we \quad may \quad assume \quad X = IP_{T}^{n}. \quad [U \to S \to O_{T}^{n}, O_{T}^{n}]$$$$$$$

But if
$$M = TO H'(X, \exists (m)) = O \forall i > O (Serve's resour)$$

Thus, $((U, \exists (m))) is a resolution of $H'(X, \exists (m)))$.
 $O \rightarrow H'(X, \exists (m))) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m))) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m))) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m))) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists (m))) \rightarrow C^{*}(U, \exists (m)) \rightarrow C^{*}(U, \exists$$

Fix a presentation of
$$K$$
 own H
 $A^{V} \longrightarrow A \longrightarrow K \rightarrow 0 - |1|$
We get an evant segn of sheares
 $F^{V} \longrightarrow F \longrightarrow F_{0} \rightarrow 0$
(Evening for $M \neg 70$ we get an exact sequence
 $H^{0}(X, F(m)^{W}) \longrightarrow H^{0}(X, F(m)) \rightarrow H^{0}(X_{0}, F(m)) - >0$
Tensice (1) with $H^{0}(X, F(m))$. Comparing
 $H^{0}(X_{0}, F(m)) \stackrel{\sim}{=} H^{0}(X, F(m)) \otimes k$ for $M \supset 0$.
 $H^{0}(X_{0}, F(m)) \stackrel{\sim}{=} H^{0}(X, F(m)) \otimes k$ for $M \supset 0$.
 $H^{0}(X_{0}, F(m)) \stackrel{\sim}{=} H^{0}(X, F(m)) \otimes k$ for $M \supset 0$.
 $H^{0}(X_{0}, F(m)) \stackrel{\sim}{=} H^{0}(X, F(m)) \otimes k$ for $M \supset 0$.
 $H^{0}(X_{0}, F(m)) \stackrel{\sim}{=} H^{0}(X, F(m)) \otimes k$ for $M \supset 0$.
 $H^{0}(X_{0}, F(m)) \stackrel{\sim}{=} H^{0}(X, F(m)) \stackrel{\sim}{\to} free$.
 $by comparing in sources at the generic point and Roo$
 $dosed point \neg T$. (Exercise: Revenue the above)
 $Skeps$.

Convollary: Let T be a connected noetherian scheme and let

$$X \in [l_{T}^{n}]$$
 be a closed subscheme of $[l_{T}^{n}]$ which is fat $[T$.
For any $f \in T$, let X_{t} be the fibre, considered as closed
subscheme of $[l_{k(t)}^{n} \cdot Then the drin X_{t} , degree X_{t} , $f_{a}(X_{t})$
are all in dependent of T.
Pf: Base change to inveducible components of T
with their reduced induced structure, so are in the
(ase T is integral. Then the result follows from the
theorem above and
 $dim X_{t} = deg P_{t}$
 $p_{a}(X_{t}) = (-1)^{n}(P_{t}(0) - 1)$.$

$$[Y] := Y \leq |P^r| with hulder regimesinside Wilbr(t)$$

Example: X & IPst hypersuface of fixed degree d.
Then
- Hillout polyno aval =
$$\binom{n+a}{r} - \binom{n-d+2}{r}$$

[$tx:$ Hint:
 $0 \rightarrow Opr(n-d) \rightarrow Opr(n) \rightarrow Opr(n) \rightarrow O$]
- $P_X(n)$ does not depend on a ponticular X but mly on
degre of X and Leading kinn dt^{n-1}
- $tx:$ Show that this hillout polynomial characterizes
hypersurfaces $Y \in IP^{k}$ annong all subsdumes
of IP^{k} having hillout polynomial $p(n)$.
Let $X \in IP^{kr}$ be a subsdume sit $P_X(h) = p(n)$
Then X is a hypersurface.