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1. Exercises on Curves

Curves in the following exercises are assumed to be irreducible.

(1) (Hartshorne I Ex. 5.3) Multiplicity: Let Y ⊂ A2 be a curve defined by
equation f(x, y) = 0. Let P = (a, b) be a point of A2. Make a linear change
of coordinates so that P becomes the point (0, 0). Then write f as a sum
f = f0 + f1 + . . . fd, where fi is a homogeneous polynomial of degree i in x
and y. Then we define the multiplicity of P on Y , denoted µP (Y ), to be
the least r such that fr 6= 0. (Note that P ∈ Y iff µP (Y ) > 0.) The linear
factors of fr are called the tangent directions at P .
(a) Show that µP (Y ) = 1 iff P is a nonsingular point of Y .
(b) Find the multiplicity of each of the singular points in x2−x4−y4 = 0,

xy = x6 = y6, x3 = y2 + x4 + y4, x2y + xy2 = x4 + y4.
(2) (Hartshorne I Ex. 5.4) Intersection multiplicity: If Y,Z ⊂ A2 are two

distinct curves, given by equations f = 0, g = 0 and if P ∈ Y ∩ Z, define
the intersection multiplicity (Y.Z)P of Y and Z at P to be the length
of the OP -module OP /(f, g).
(a) Show that (Y.Z)P is finite, and (Y.Z)P ≥ µP (Y )µP (Z).
(b) If P ∈ Y , show that almost all lines L through P (i.e., all but a finite

number), (L.Y )P = µP (Y ).
(c) If Y is a curve of degree d in P2 (i.e., defined by an equation of degree

d), and if L is a line in P2, L 6= Y , then define (L.Y ) :=
∑

(L.Y )P
taken over all points P ∈ L ∩ Y , where (L.Y )P is defined using a
suitable affine cover. Show that (L.Y ) = d.

(3) (Hartshorne I Ex. 5.11) Elliptic Quartic Curve in P3: Let Y := Z(x2−xz−
yw, yz − xw − zw) be the zero set in P3. Let P be the point (x, y, z, w) =
(0, 0, 0, 1), and let ϕ denote the projection from P to the plane w = 0.
(a) Show that ϕ induces an isomorphism of Y − P with the plane cubic

curve y2z − x3 + xz2 = 0 minus the point (1, 0,−1).
(b) Show that Y is an irreducible nonsingular curve.

The curve Y is called the elliptic quartic curve in P3. This is an example
of a complete intersection.

2. Associated points on a scheme

(1) (Liu Ex. 2.1.4) Let A be a ring.
(a) Let p be a minimal prime ideal of A. Show that pAp is nilpotent.

Deduce from this that every element of p is a zero divisor in A.
(b) Show that if A is reduced, then any zero divisor in A is an element of

a minimal prime ideal. Show that this is false if A is not reduced.
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(2) (Liu Remark 7.1.10) If X has no embedded points, then Ass(OX) ⊂ U if
and only if U is everywhere dense in X.

(3) (Liu Remark 7.1.14) If X is locally Noetherian, or if it is reduced with only
finitely many irreducible components, then for any affine open subset U of
X we have KX(U) = K′X(U) = Frac(OX(U)).

(4) Show that generic points of X are associated points of X.
(5) (Liu Ex. 7.1.2) Let X be a locally Noetherian scheme without embedded

points. Show that X is reduced if and only if it is reduced at the generic
points.

(6) (Liu Ex. 7.1.3) Let X be a locally Noetherian scheme. we suppose that
there exists a unique point x ∈ X such that OX,x is not reduced. Show
that x ∈ Ass(OX).

3. Cartier Divisor

(1) (Liu Ex 7.1.13) Let L be an invertible sheaf on an integral scheme X. Let
s ∈ Γ(X,L ⊗OX

KX) be a non-zero rational section of L.
(a) Let {Ui}i be a covering of X such that L|Ui

is free and generated
by the elements ei. Show that there exist fi ∈ K(X)∗ (Recall that
K(X) := OX,ξ for the unique generic point ξ of X) such that s|Ui

=
eifi. Show that {(Ui, fi)}i defines a Cartier divisor on X. We denote
it by div(s). Show that OX(div(s)) = L.

(b) If L = OX , show that div(s) is the principal Cartier divisor associated
to s.

(c) Show that div(s) ≥ 0 iff s ∈ Γ(X,L).
(d) Let D ∈ Div(X). For any open subset U of X, show that

OX(D)(U) = {f ∈ K∗X(U)|div(f) +D|U ≥ 0} ∪ {0}.
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