EXERCISE SHEET 3: ALGEBRAIC CURVES AND RIEMANN SURFACES

TANYA KAUSHAL SRIVASTAVA

DUE DATE: 12 October 2021

1. Exercises on Complex analysis and manifolds

Definition 1. A closed subset of \mathbb{C}^n is called a **closed analytic subspace** if, for every point $x \in X$, there exists an open neighborhood U of x in \mathbb{C}^n and finitely many holomorphic functions f_1, \ldots, f_r on U so that

$$X \cap U = \{ y \in U | f_i(y) = 0 \ \forall \ 1 \le i \le r \}.$$

Note that any algebraic subset (i.e., zero set of finitely many polynomials) of \mathbb{C}^n (with usual subspace topology not Zariski topology) is automatically a closed analytic subspace.

- (1) (2 pts) Give an example of a closed analytic subspace of \mathbb{C}^n which is not an algebraic subspace.
- (2) (3 pts) State implicit function theorem for complex multivariate holomorphic functions. Use the statement of the theorem to come up with conditions that will make a closed analytic subspace into a complex manifold.

2. Exercises on Projective varieties

- (1) (2pts) Show that an ideal is homogeneous if and oly if it can be generated by homogeneous elements.
- (2) (4 pts) Show that sum, product, intersection and radical of homogeneous ideals are homogeneous.
- (3) (2 pts) (Homogeneous Nullstellensatz) Prove that if $\mathfrak{a} \subset S = k[x_0, \ldots, x_n]$ is a homogeneous ideal and if $f \in S$ is a homogeneous polynomial with degree of f > 0, such that f(P) = 0 for all $P \in Z(\mathfrak{a})$ in \mathbb{P}^n , then $f^q \in \mathfrak{a}$ for some q > 0.
- (4) (3 pts) For a homogeneous ideal $\mathfrak{a} \subseteq S$, show that the following conditions are equivalent:
 - (a) $Z(\mathfrak{a}) = \emptyset$ (the empty set).
 - (b) $\sqrt{\mathfrak{a}} = S$ or the ideal is $S_+ = \bigoplus_{d>0} S_d$.
 - (c) $\mathfrak{a} \supseteq S_d$ for some d > 0.
- (5) (4 pts) Prove that
 - (a) There is a 1-1 inclusion reversing correspondence between the algebraic sets in Pⁿ and homogeneous ideals of S not equal to S₊, given by Y → I(Y) and a → Z(a).
 - (b) An algebraic set is irreducible iff I(Y) is a prime ideal.
 - (c) \mathbb{P}^n itself is irreducible.
 - (d) Every algebraic set in \mathbb{P}^n can be written uniquely as a finite union of irreducible algebraic sets, no one containing another.
- (6) (2 pts) If Y is a projective variety with homogeneous coordinate ring S(Y) show that dim $S(Y) = \dim Y + 1$.

Date: October 5, 2021.

TANYA KAUSHAL SRIVASTAVA

- (7) (2 pts) Show that $\dim \mathbb{P}^n = n$.
- (8) (6 pts) **Twisted Cubic** Let $Y \subset \mathbb{A}^3$ be the set $Y = (t, t^2, t^3)|t \in k$. Show that Y is an affine variety of dimension 1. Find the generators of the ideal I(Y). Show that A(Y) is isomorphic to a polynomial ring in one variable. Let \bar{Y} be its projective closure. Find the generators for $I(\bar{Y})$ and use this example to show that if f_1, \ldots, f_r are generator of I(Y), then $\beta(f_1), \ldots, \beta(f_r)$ do not necessarily generate $I(\bar{Y})$.

 $\mathbf{2}$