Defⁿ: X be a purjetive were over a field k, Z invertible sheaf on X we define the degree of Z to be the integer $\deg Z := X (Z) - X(Q_X)$.

lemma: x proj curr/k

a) ty Z ~ Ox(D) for some D E Div(X), then degli-deg D

b) Z → deg Z is a group homo Pc(X) → Z

P: a) Reimann deg D = $X(O_X(D)) - X(O_X)$

b) $(a(l(X) \supseteq Pix(X))$, $deg O_{x}=0$.

Defr: ici: Y hocally northerian schune (: X -> Y monphosm offinik for Then we say that f is a local complete intersection (201) the if I XEU and a commutative diagram

7 regular immersion, g is a smooth morphism.

We say f is dei if it is leat every point of X. Example: I: X-> Y is regular / smooth.

lorollary: Lot x be an lei proj curve/k, with genus Pa Then

a) deg $\omega_{X/k} = 2(p_a-1)$

b) $\dim_k 4(X, \omega_{X/k}) = pa$ if X is geom. Connected 2 go. radiced.

If: Pille a D s+ $O_X(D) \cong W \times / k$ $deg w \times / k = (W \times k) - (X / Q_X) / P_a(X) - L$ $= dim H^o(X, w \times / k) - dim H'(X, w \times / k)$ $= H'(X, Q_X) \vee H^o(X, Q_X) \vee$ $= (Q_X) + P_a(X) - 1$ $= 2(p_a(X) - 1)$

b) Use H°(X, Wx/k)= pa + RR.

Def: X projective cure la orien a field k. Any Centrer Divisor K on X such that $(0x|k) \cong \omega x/k$ is collected ranonical divisor.

. Such a divisor always exists.

- KX/r (only defined upto linear capitualence). (denote)

Remark: R-R theorem can be related as $D \in Div(X)$ $L(D) - L(K-D) = \text{deg } D + 1 - p_{\Delta}(X)$.

- If \times is integral and $\deg D > 2\rho_0(x) - 2 = \deg K$ then $\varrho(D) = \deg D + 1 - \rho_0(x)$. X be a lei projective newe/k s.t $\omega_X \simeq \mathcal{O}_X = \mathcal{O}_$

Def : X scheme, X_{11...}, X_n be irreducible components with reduced closed substitutes!.

X' = U | X' | where X | is the romalization of X;

normalization of X.

By construction, X' is endowed with a surjective integral mysem $\pi: X' \longrightarrow X$ (Moreover, π is finite)

- Note $X_{\text{red}} = X'$.

let X be a reduced curve/k. $\pi: X' \to X$ normalization. (fink)

We have an exact segmence of showers on X: $0 \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{T}_X \mathcal{O}_{X'} \longrightarrow S \longrightarrow \mathcal{O}$ (1)

Supp(S) is a closed set not containing any generic printyx.
 Supp S is a finite set, consisting of singular punts
 Sis a sleysk rapper sharf (direct sum)

For any $x \in X$, we have $S_z = \frac{O_{X_i z}}{O_{X_i z}} \frac{O_{X_i z}}{O_{X_i z}} = \frac{O_{X_i z}}{O_{X_i z}} \frac{1}{n^2 + o(O_{0})}$ [normalization committee with localization

let $S_2 := longth O_{x,z}S_2 := [k(x):k]^d dim S_2$.

Then $S_2 := 0$ left x in normal in x (hence rgulen)

Prop. X reduced projective curve over a field k, $\chi_1,...,\chi_n$ be the irreducible components of χ . Then $p_a(x) + n - 1 = \sum_{i \in \mathbb{N}} p_a(\chi_i') + \sum_{x \in X} [k|x); k] \delta_{\mathcal{Z}}.$ $\chi_i' \text{ is now all ration } q(\chi_i').$

Proof: $0 \rightarrow 0_X \rightarrow 7_X 0_{X'} \rightarrow 5 \rightarrow 0$ =) $X(\pi_Y 0_{X'}) = X(0_X) + X(5)$ As π_I is finite $X(\pi_X 0_{X'}) = X(0_{X'}) = \sum_{1 \le i \le n} X(0_{X'_i})$ = $n - \sum_{1 \le i \le n} P_a(X_i')$ Moreover, since S is sky-crapper

Morcover, since S is sky scrapper (Links = 2 [M:1] ox $\times (5) = \dim_k H^*(\times, 5) = \frac{1}{2} \dim_k S_{\mathbf{Z}} = \frac{1}{2} [M:1] \delta_{\mathbf{Z}}$

```
Propos: X geo integral projective wwe/k of Pa & O.
        Then we have the following properties:
     (a) The curve x is a 'smooth whick
     (b) we have × ≈ IPk iff ×(k) ≠ Ø.
  Proof: X' normalization of XE
         4°(x', Ux') = ]
         => Pa(X') >0 => pa(X') =0
          =) X_{\overline{k}} = X' (i.e. X_{\overline{k}} is normal)
          =) X is smooth over k.
   b) suppose that three enists an x1 & X1k)
            Then L(x1) = 2
            -) X = IPR + Ox(x1) is very ample.
   a) let K be a canonical divisor of X, and let D=-K
       Then deg D = 2 and \ell(0) = 3.
                                                     2(pa-1)
      Uaim: Ox (D) is very ample.
    [ Assume the Laim, then Ox (D) induces a closed immunion
       from X to Pk and image is a conic by the
            zenus formula (d-1)(a-2)/2
   Proof of claim: Why base change to algoclassure let k_1 \in X(k)
  Then e(D-2x1) = 1 and therefore DN2x2
        [use deg (D-271)=0 6ut l(D-21)70]

=) 0\times(D) \simeq 0\times(21)02
                      1 very ample
Remark: Proof also shows that on a smooth projective of Genus O,
          every divisor of deg 1 or 2 is very ample.
      (=) Every divisor of strictly the degree is very emple ].
```

Lemma 1: Let X be a proj. curve/fe and let Df Divy(X) with support in the segular was of X. Then Ox(D) is generally

support in the signal was of X. Then $O_X(D)$ is generally by its global section iff for any $x \in Supp D$ we have $L(D-X) \subset L(D)$.

Proof: As D > 0 Q($O_X(D)$)

hence $1 \in H^0(X, O_X(D))$

=) $O_X(D)$ is general ear by it global sedims at every point $z \not\in Supp(D)$. let $x \in Supp(D)$. Then $D - x \in O$ $\Rightarrow L(D-z) \in L(D)$ $O_X(D-z)_X = m_Z(O_X(D)_Z)$ [Exercise]

If L(D-x) < L(D), then steel entite $A \in L(D) + L(D)$ we then have $B_{xy} \neq (D_{x}(D-x)_{z} = M_{z}(D_{x}(D)_{z})$

=) so is a generator of $(0\times (0))_2$ and $(0\times (0))$ is generated by its global sections at z.

(envensely, suppose $O_X(1)$) in general ed by its global section at x. Let $x \in L(1)$ be such that x_2 is a general or $\{O_x\}^3$. Then $S_X \notin L(1)-x_2$ and hence $x \in L(1)-x_2$.

三) ムローカ)とし(り). ワ

Lemma 2: let X be a connected smooth projective one k=E let $D \in Div_+(X)$ such that for any pair of (not necessity distinct) points $p, y \in X(k)$, we have $L(D-p-y) \subset L(D-p) \subset L(D)$.

Then Ox10) is very ample.

Sketch: From the Lemma Labore, Ox(1) is generatedly its

Sketch: From the lemma labore, $O_X(1)$ is generated by its global sections.

let {30,..., sn} be a basis of LLD) and f: X -> Ph be the associated morphism.

(lain: fis injective

P, qy be two distinct closed points. Then $\exists S \in L(D-P) \setminus L(D-P-q)$.

 \Rightarrow we has $p \in mp(0 \times (0))_p$ while so, is a greator of $O \times (0)_p$. Write $s = \sum_{0 \leq i \leq n} \lambda_i s_i$: $\lambda_i \in k$.

and $f(p) = (p_0, ..., (n_i), f(q_i) = (q_0, ..., q_n_i)$.

Fix a basis e of $O_{\tau}(D)p$. then $(3i)_{p} \in p:e + m_{p}^{2}$. $=) \sum_{i} \lambda_{i}p_{i} = 0$ (Uselle)

BUT Z > vi vi + 0 . => f(p) + f(q).

Exercise: Show Tr.p (the tangent map) is injective for every pe ×(k).

ロ

Prop": Let X be a smooth, geo. connected, projective anne over a field k of genus g. Let L be an invertible what on X

(a) It deg Z 729, then Z is gonerated by its global sections

(6) If deg I > 2g+1. then Z is very ample

Proof: Whole assume k is all alood

Let D be a (ashor davisor ruch that $O_X(D) \stackrel{\sim}{\sim} X$.

First note that if day D> 2q. (resp. days? 2g+1)

then $L(D-E) = L(D) - day = free (Div_XK)$ Sit day 161 L(D-E) = day(D-E)+1-q (deg (D-E)>2q-27. = day D- day = free (D-E)>2q-27.

Remainder $L(D) \neq O$. (L(D) = 2day D+1-y)

The particular $L(D) \neq O$. (L(D) = 2day D+1-y)

The linear equivalence, we can reduce to D

Unie by linear equivalence, ver con reduce to 020. Then lemma 1 => global gene

2 =) very ample.

(grollany: X smooth proj. Lonnocled curve / k of genus 1, suppose \exists $0 \in X(k)$ then x is an ellipticume and (0x(30)) is very ample.

Proof: Next time.