Not:
$$\exists, \varphi, Q_{\lambda}$$
-modules (X, Q_{λ}) -truged space
Hom $\chi(\exists, \varsigma):=$ group of Q_{λ} -module hom.
Hom $\chi(\exists, \varsigma):=$ Hom sheet $U \mapsto Hom \binom{[\exists]_{\lambda}}{\forall U}$
For a fixed $\exists,$ Hom (\exists, \circ) byt exact constant finds
 $Hom(\exists, \circ) \xrightarrow{Mod(\lambda)} \xrightarrow{Mod(\lambda)} \xrightarrow{Mod(\lambda)}$
Recall: $Mod(X)$ has enough injectives
 $Ext^{\dagger}(\exists, \circ)$ uight derived functor $\Im Hom(\exists, \cdot)$
 $Ext^{\dagger}(\exists, \cdot)$ $\xrightarrow{Mom(\forall, \cdot)} \xrightarrow{Q} Hom(\forall, \cdot)$
 $Ext^{\dagger}(\exists, \cdot)$ $\xrightarrow{Q} Hom(\forall, \cdot)$
 $Ext^{\dagger}(\exists, \cdot) \xrightarrow{Q} Hom(\forall, \cdot)$
 $Ext^{\dagger}(\forall, \cdot) = 0$ for $i > 0$
 $Ext^{\dagger}((0, x, \cdot)) = \varphi$
 $= Ext^{\dagger}((0, x, \cdot)) = \varphi$
 $= Ext^{\dagger}((0, x, \cdot)) \cong H^{\dagger}(x, \cdot)$ $i \ge 0$
 $= Ext^{\dagger}(\forall \times Z_{i} \cdot \zeta_{j}) \cong Ext^{\dagger}(\forall, \cdot, Z^{\dagger} \otimes \zeta_{j})$
 Z focally free sheef \Re finite rank
 $Z^{\prime} = Hom(Z_{i}, O_{X})$. dual.

-_____, ___, ___, ___, ____ Then I an integer no >0. depending on I, G and i s.t for every n = no, we have $Ext^{i}(F, G(n)) \cong \Gamma(X, Eat^{i}(F, G(n)))$ Thm: Let $X = \mathbb{P}_{k}$, $W_{X} = \Lambda^{n} \mathcal{N}_{X/k}$. Then (a) $\mu^n(X, w_X) \stackrel{\sim}{=} k$. Fix one such iso morphism (b) I & loh(X), the natural pairing $Hom(J, \omega) \times H^{n}(X, \mathcal{F}) \rightarrow H^{n}(X, \omega) \cong k$ is a perfect paring offinite dim'é vector spaces//k (1) for edery i 20, there is a natural functional isomorphism $\xi x + (\forall, \omega) \xrightarrow{P} + H^{n-i}(X, \forall)^{\vee}$ which for i= 0 is the one induced by the pairing b). Proof: a) Thm 5.1. (4"(p, Opn(-n-1)) & k) b) ケー→ωx induce $H^{n}(X, \mathfrak{P}) \longrightarrow H^{n}(X, \omega_{\mathcal{P}})$ This give the natural paining. J J= U(q), then Hom (Y, ω) = H°(X,ω(-q)) and b) perfect paining, Then S. (d). =)] = () (gri) €1-2 - 7. - 0 For arbitray J Going e Oran) Apply 5- lomma . (c) Exercise. Defn: X puoper schane of dim n/k Dualizing sheaf: coherent sheaf Wx" on X + tr: H"(X, wx") - k st $\forall \exists \in (\omegah(X) \mid Hom(\exists w_{x}) \times H^{n}(X, \exists) \rightarrow H^{n}(X, w_{x}))$ 4 -12 gives an isomorphism Ł $Hom(M, \omega_x^\circ) \xrightarrow{\sim} H^n(X, \mathcal{Y})^V$ Propris X/k proper. Then a dualizange sheaf for X, if it exists, is unique. Here precisely, (w, tr) (wx, tr) then there is a unique iso 4: wo -w sot

Lemma 2: X (→ IPk codim k, let
$$\omega_{X}^{o} := \operatorname{Ext}^{k} (D_{X}, \omega_{pu})$$

Then for any $(D_{X} : \operatorname{module} \mathcal{F}, \operatorname{then} in a functorial in
Hom_{X} (\mathcal{F}, \omega_{X}) \cong \operatorname{Ext}^{k}_{IPN} (\mathcal{F}, \omega_{IPN})$
Proof: let $0 \to \omega_{IPN} \to \mathcal{J}^{o}$ an injective resolution $\mathfrak{g} \omega_{pu}$
in Mod (IPN)
Ext ipn ($\mathcal{F}, \omega_{IPN}$) = hⁱ (Hom_{IPU} ($\mathcal{F}, \mathcal{F}^{o}$))
Jince \mathcal{F} is an $(D_{X} - \operatorname{module}, \operatorname{any morphism} \mathcal{F} \to \mathcal{J}^{o})$
Jactors $\mathcal{J}^{i} = \operatorname{Hom}((D_{X}, \mathcal{J}^{i}), (\operatorname{Exervise}) \mathcal{F} \to \mathcal{J}^{o} \to \mathcal{J}^{i}$
Thus, $\operatorname{Ext}^{i}_{pN} (\mathcal{F}, \omega_{IPN}) = h^{i} (\operatorname{Hom}_{X} (\mathcal{F}, \mathcal{J}^{o}))$

(laim:
$$T_{i}$$
 is injective. \mathcal{O}_{X} -module.
[Indeed, Hom $\chi(T_{i}, T_{i}) = Hom p.u(T_{i}, T_{i})$
so $Hom \chi(-, T_{i})$ is an exact yherebox.]
Furthermore, by lemma 1, we have $h^{2}(T_{i}) = 0$ for i.e.
So the complex is exact up to the π -th step.
 $\Rightarrow T_{i} = T_{i} + T_{i}^{2}$ where π_{i} is a complex in
degree $0 \le i \le \pi$ indexect
 V_{i}^{2} is a complex in degree $i \ge 2$
 $T_{i}^{n-1} \stackrel{h}{\to} T_{i}^{n} \stackrel{h}{\to} T_{i}^{n} \stackrel{h}{\to} T_{i}^{n}$
 $(\omega_{\chi}^{2} - \frac{\ker d^{n}}{1m d^{n-1}} \stackrel{h}{\to} T_{i}^{n}$
 $= Ker()$

= kei()
=)
$$W_{x} = ke_{x} (d^{x} : \eta_{x}^{x} \longrightarrow \eta_{x}^{x+1})$$

and for any $U_{x} - module = f$
 $H_{U}m_{x} (f_{1}W_{x}^{o}) \stackrel{\cong}{=} Ext_{1}^{r_{U}} (f_{1}W_{pN})$
Remark: $(Ext_{1}r_{N} (f_{1}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{1}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{1}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{1}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{1}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{1}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{1}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{N}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (Ext_{1}r_{N} (f_{N}W_{pN}) = 0 \text{ for } ick.)$
 $Remark: (f_{N}W_{N}) = Ext_{1}r_{N} (f_{N}W_{pN}).$
 $Remark: (f_{N}W_{N}) = Ext_{1}r_{N} (f_{N}W_{pN}).$
 $Remark: (f_{N}W_{N}) = Kr_{1}r_{N} (f_{N}W_{pN}).$
 $Remark: (f_{N}W_{N}) = H^{N-K}(IpN, fN).$
 $Remark: (f_{N}W_{N}) = H^{N-K}(IpN, fN).$
 $Remark: (f_{N}W_{N}) = H^{N}(X, f_{N}).$
 $Remark: (f_{N}W_{N}) = H^{N}(X, f_{N}).$

Then
$$w_{x}^{\circ} \cong w_{IPN} \otimes \Lambda^{\circ}(\overline{1}/\underline{1}^{2})$$

Then $w_{x}^{\circ} \cong w_{IPN} \otimes \Lambda^{\circ}(\overline{1}/\underline{1}^{2})$
In particular, w_{x}° is an invertible sheaf on X.